ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Hypervalent Iodine-Mediated Styrene Hetero- and Homodimerization Initiation Proceeds with Two-Electron Reductive Cleavage

preprint
revised on 28.08.2020 and posted on 28.08.2020 by Aqeel A. Hussein, Yumiao Ma, Ahmed Al-Yasari

A mechanistic insight into the hetero- and homodimerizations (HETD and HOMD) of styrenes promoted by hypervalent iodine reagents (HVIRs; DMP and PIDA) and facilitated by HFIP to yield all trans cyclobutanes is reported using density functional theory (DFT) calculations. The initialization involving direct bimolecular one-electron transfer is found to be highly unfavored, especially for the PIDA system. At this point, we suggest that the reaction is initiated with an overall two-electron reductive cleavage of two I─O bond cleavages, affording I(III) (iodinane) and I(I) (iodobenzene) product with DMP and PIDA as oxidant, respectively. The resulting acetate groups are stabilized by the solvent HFIP through strong hydrogen bonding interaction, which promotes the electron transfer process. The nature of the electron transfer is studied in detail and found that the overall two-electron transfer occurs within tri-molecular complex organized by π-stacking interactions and as a stepwise and concerted mechanism for I(III) and I(V) oxidants, respectively. The reaction rate is determined by the initialization step: for I(III), the initiation is thermodynamically endergonic, whereas the endergonicity for I(V) is modest. Upon initialization, the reaction proceeds through a stepwise [2+2] pathway, involving a radical-cationic π-π stacked intermediate, either hetero- or homodimerized. DFT results supported by quasiclassical molecular dynamics simulations show that HOMD is dynamically competing pathway to HETD although the latter is relatively faster, in accordance with experimental observations.

History

Email Address of Submitting Author

aqeel_alaa85@yahoo.com

Institution

University of Al-Ameed

Country

Iraq

ORCID For Submitting Author

0000-0002-9259-9609

Declaration of Conflict of Interest

There are no conflicts to declare.

Version Notes

The is the final version

Exports