ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
4 files

The Structures of Ordered Defects in Thiocyanate Analogues of Prussian Blue

preprint
submitted on 28.02.2020, 17:06 and posted on 02.03.2020, 13:06 by Matthew Cliffe, Evan Keyzer, Andrew Bond, Maxwell A. Astle, Clare P. Grey

We report the structures of six new divalent transition metal hexathiocyanatobismuthate frameworks with the approximate formula MII[Bi(SCN)6]1−x · xH2O, M = Mn, Co, Ni and Zn. These frameworks are defective analogues of the perovskite-derived trivalent transition metal hexathiocyanatobismuthates MIII[Bi(SCN)6]. The defects in these new thiocyanate frameworks order and produce complex superstructures due to the low symmetry of the parent structure, in contrast to the related and more well-studied cyanide Prussian Blue analogues. Despite the close similarities in the chemistries of these four transition metal cations, we find that each framework contains a different mechanism for accommodating the lowered transition metal charge, making use of some combination of Bi(SCN)63– vacancies, M antisite defects, water substitution for thiocyanate, adventitious extra-framework cations and reduced metal coordination number. These materials provide an unusually clear view of defects in molecular framework materials and their variety suggests that similar richness may be waiting to be uncovered in other hybrid perovskite frameworks.

History

Email Address of Submitting Author

matthew.cliffe@nottingham.ac.uk

Institution

University of Nottingham

Country

United Kingdom

ORCID For Submitting Author

0000-0002-0408-7647

Declaration of Conflict of Interest

No conflict

Licence

Exports

Logo branding

Licence

Exports