These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

The Shape of Water in Zeolites and Its Impact on Epoxidation Catalysis

submitted on 25.11.2020, 19:44 and posted on 26.11.2020, 12:23 by Daniel Bregante, Matthew Chan, Jun Zhi Tan, E. Zeynep Ayla, Christopher P. Nicholas, Diwakar Shukla, David Flaherty
Solvent structures that surround active sites reorganize during catalysis and influence the stability of surface intermediates. Within the pores of a zeolite, H2O molecules form hydrogen-bonded structures that differ significantly from bulk H2O. Spectroscopic measurements and molecular dynamics simulations show that H2O molecules form bulk-like three-dimensional structures within 1.3 nm cages, while H2O molecules coalesce into oligomeric one-dimensional chains distributed throughout zeolite frameworks when the pore diameter is smaller than 0.65 nm. The differences between the motifs of these solvent structures provide opportunities to manipulate enthalpy-entropy compensation relationships and significantly increase rates of catalytic turnover events. Here, we explain how the reorganization of these pore size-dependent H2O structures during alkene epoxidation catalysis gives rise to entropy gains that increase turnover rates by up to 400-fold. Collectively, this work shows how solvent molecules form discrete structures with highly correlated motion within microporous environments, and that the reorganization of these structures may be controlled to confer stability to reactive intermediates.


The Role of Cooperative Interactions Among Surfaces, Solvents, and Reactive Intermediates on Catalysis at Liquid-Solid Interfaces

Basic Energy Sciences

Find out more...


Email Address of Submitting Author


University of Illinois at Urbana-Champaign


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

We have no conflict of interest to disclose.