ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Na3PS4_T evolution_v4_RxivSub.pdf (2.19 MB)

The Polymorphs of the Na+ Ion Conductor Na3PS4 from the Perspective of Variable Temperature Diffraction and Spectroscopy

preprint
submitted on 13.01.2021, 11:05 and posted on 18.01.2021, 04:45 by Theodosios Famprikis, Houssny Bouyanfif, Pieremanuele Canepa, James Dawson, Mohamed Zbiri, Emmanuelle Suard, François Fauth, Helen Y. Playford, Damien Dambournet, Olaf Borkiewicz, Matthieu Courty, Jean-Nöel Chotard, Saiful Islam, Christian Masquelier
Solid electrolytes are crucial for next generation solid state batteries and Na3PS4 is one of the most promising Na+ conductors for such applications. In this contribution, we present a detailed investigation of the evolution in structure and dynamics of Na3PS4 under the effect of temperature in the range 30 < T < 600 °C through combined experimental-computational analysis. Although x ray Bragg diffraction experiments indicate a second order phase transition from the tetragonal ground state (α, P-421c) to the cubic polymorph (β, I-43m), pair distribution function analysis in real space and Raman spectroscopy indicate remnants of tetragonal character in the range 250 < T < 500 °C which we attribute to dynamic local tetragonal distortions. The first order phase transition to the mesophasic high temperature polymorph (γ, Fddd) is associated with a sharp volume increase and the onset of liquid like diffusive dynamics for sodium-cations (translative) and thiophosphate-polyanions (rotational) evident by inelastic neutron- and Raman- spectroscopies, as well as pair-distribution function and molecular dynamics. These results shed light on the rich polymorphism in Na3PS4 and are relevant for a host of high performance materials deriving from the Na3PS4 structural archetype.

History

Email Address of Submitting Author

t.famprikis@tudelft.nl

Institution

TU Delft

Country

Netherlands

ORCID For Submitting Author

0000-0002-7946-1445

Declaration of Conflict of Interest

no conflict of interest

Exports