ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Temporal Fluctuations in Interparticle Interactions Drive the Formation of Transiently Stable Nanoparticle Precipitates

preprint
submitted on 24.04.2020 and posted on 27.04.2020 by Anish Rao, Soumendu Roy, Pramod Pillai

The pH and ionic strength dependence of electrostatic interactions was explored to introduce temporal fluctuations in the strengths of interparticle interactions and choreograph a transient self-assembly response in plasmonic nanoparticles. The assembly process was triggered by the electrostatic attraction between positively-charged gold nanoparticles (AuNPs) and an aggregating agent, ethylenediaminetetraacetic acid (EDTA). The autonomous changes in the pH and ionic strength of the solution, under the influence of atmospheric CO2, weaken the aggregating ability of EDTA and initiate the complete disassembly of [+] AuNP - EDTA precipitates. The non-destructive way of disassembly minimizes the generation of waste, which helped in achieving some of the desirable feats in the area of dynamic self-assembly like easy removal of waste, transiently stable precipitates and negligible dampness. The chemical strategy adopted in the present work, to introduce transientness, can act as a generic tool in creating the next generation of complex matter.


Funding

SERB-EMR/2015/001561

History

Email Address of Submitting Author

pramod.pillai@iiserpune.ac.in

Institution

Indian Institute of Science Education an Research (IISER) Pune

Country

India

ORCID For Submitting Author

0000-0002-6467-9636

Declaration of Conflict of Interest

No conflict of Interest

Exports