ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Tailorable Phase and Structural MnO2 as Electrode for Highly Efficient Hybrid Capacitive Desalination (HCDI)

preprint
submitted on 12.11.2019 and posted on 25.11.2019 by Jie Jin, Man Li, Mengting Tang, Yang Li, Yangyang Liu, Hui Cao, Feihu Li
Hybrid capacitive deionization (HCDI) is an emerging and promising technology for water desalination and has been extensively explored in recent years. Designing a structure tailorable electrode material has been proved to be a valid strategy for achieving a higher salt adsorption capacity (SAC). In this study, MnO2 materials with tailorable phase compositions and regulatory microstructures were prepared hydrothermally and then evaluated as electrodes for removal of ions from NaCl solution in a membrane-free HCDI cell. MnO2 electrode materials tested in HCDI system include poorly crystalline δ-MnO2 with a lot of amorphous phases (MnO2-1h), crystalline δ-MnO2 with amorphous MnO2 (MnO2-2h), MnO2 mixtures of α-, δ-, and amorphous MnO2 (MnO2-5h), and α-MnO2 nanowire with minor amorphous MnO2 (MnO2-12h). It is notable that the phase composition along with the microstructures of MnO2 materials rather than their surface areas determines the SAC values. When the cell voltage is 1.2 V, the lamellar structured MnO2-1h electrode demonstrates the highest SACs of 13.84 mg g-1 in 100 mg L-1 NaCl, and 21.32 mg g-1 in 500 mg L-1 NaCl solution, respectively. The desalination efficiencies are remarkable and far greater than other MnO2-based electrodes under similar conditions (e.g., NaCl concentrations, cell voltage, etc.). This study sheds light on the significance of understanding the fundamental of both phase composition and microstructure in governing the desalination performance of MnO2 electrodes.

Funding

NSFC (Grant No. 51002080, 41501197)

History

Email Address of Submitting Author

fhli@nuist.edu.cn

Institution

Nanjing University of Information Science & Technology

Country

China

ORCID For Submitting Author

0000-0002-2969-8276

Declaration of Conflict of Interest

The authors declare no competing financial interest.

Version Notes

Manuscript version 1.08

Exports

Logo branding

Exports