ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Systematic Screening of DMOF-1 with NH2, NO2, Br and Azobenzene Functionalities for Elucidation of Carbon Dioxide and Nitrogen Separation Properties

preprint
submitted on 11.07.2019 and posted on 15.07.2019 by Mingrou Xie, Nicholaus Prasetya, Bradley P. Ladewig
In this study, dabco MOF-1 (DMOF-1) with four different functional groups (NH2, NO2, Br and azobenzene) has been successfully synthesized through systematic control of the synthesis condition of their parent framework. The functionalised DMOF-1 is characterized using various analytical techniques including PXRD, TGA and N2 sorption. The effect of the various functional groups on the performance of the MOFs for post-combustion CO2 capture is evaluated. DMOF-1s with polar functional groups are found to have better affinity with CO2 compared with the parent framework as indicated by higher CO2 heat of adsorption. However, imparting steric hindrance to the framework as in Azo-DMOF-1 enhances CO2/N2 selectivity, potentially as a result of lower N2 affinity for the framework.

History

Email Address of Submitting Author

bradley.ladewig@kit.edu

Institution

Karlsruhe Institute of Technology

Country

Germany

ORCID For Submitting Author

0000-0002-2135-1913

Declaration of Conflict of Interest

No conflict of interest.

Exports