These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Systematic Investigation of Functional Ligands for Colloidal Stable Upconversion Nanoparticles

submitted on 14.12.2017, 05:59 and posted on 14.12.2017, 16:46 by Hien Duong, Yinghui Chen, Sherif Abdulkader Tawfik, Shihui Wen, Maryam Parviz, Mike J Ford, Olga Shimoni, Dayong Jin

Despite intense efforts on surface functionalization to generate hydrophilic upconversion nanoparticles (UCNPs), long-term colloidal stability in physiological buffers remains a major concern. Here we quantitatively investigate the competitive adsorption of phosphate, carboxylic acid and sulphonic acid onto the surface of UCNPs and study their binding strength to identify the best conjugation strategy. To achieve this, we designed and synthesized three di-block copolymers composed of poly(ethylene glycol) methyl ether acrylate and a polymer block bearing phosphate, carboxylic or sulphonic acid anchoring groups prepared by an advanced polymerization technique, Reversible Addition Fragmentation Chain Transfer (RAFT). Analytical tools provide the evidence that phosphate ligands completely replaced all the oleic acid capping molecules on the surface of the UCNPs compared with incomplete ligand exchange by carboxylic and sulphonic acid groups. In the meanwhile, simulated quantitative adsorption energy measurements confirmed that among three functional groups, calculated adsorption strength for phosphate anchoring ligands is higher which is in good agreement with experimental results regarding the best colloidal stability especially in phosphate buffer solution. The finding suggests that polymers with multiple anchoring negatively charged phosphate moieties provide excellent colloidal stability for lanthanide ion-doped luminescent nanoparticles for various potential applications.



  • Coating Materials
  • Biocompatible Materials
  • Nanostructured Materials

Email Address of Submitting Author


University of Sydney



ORCID For Submitting Author


Declaration of Conflict of Interest