These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Symmetry-Adapted Perturbation Theory Decomposition of the Reaction Force: Insights into Substituent Effects Involved in Hemiacetal Formation Mechanisms

submitted on 18.07.2019, 22:11 and posted on 22.07.2019, 16:00 by Wallace Derricotte
The decomposition of the reaction force based on symmetry-adapted perturbation theory (SAPT) has been proposed. This approach was used to investigate the subtituent effects along the reaction coordinate pathway for the hemiacetal formation mechanism between methanol and substituted aldehydes of the form CX3CHO (X = H, F, Cl, and Br), providing a quantitative evaluation of the reaction-driving and reaction-retarding force components. Our results highlight the importance of more favorable electrostatic and induction effects in the reactions involving halogenated aldehydes that leads to lower activation energy barriers. These substituent effects are further elucidated by applying the functional-group partition of symmetry-adapted
perturbation theory (F-SAPT). The results show that the reaction is largely driven by favorable direct non-covalent interactions between the CX3 group on the aldehyde and the OH group on methanol.


Email Address of Submitting Author


Morehouse College


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

No Conflict of Interest