These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Supramolecular Assembly of U(IV) Clusters and Superatoms

submitted on 16.02.2020, 19:59 and posted on 19.02.2020, 05:59 by Ian Colliard, Gregory Morrosin, Hans-Conrad zur Loye, May Nyman
Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger LnIII (Ln=La-Ho) link hexamer (U6) oxoclusters into body-centered cubic frameworks, while smaller LnIII (Ln=Er-Lu &Y) promote linking of fourteen U6-clusters into hollow superclusters (U84 superatoms). U84 assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U6-clusters. Divalent transition metals (TM=MnII and ZnII), with no added acid, charge-balance and promote the fusion of 10 U6 and 10 U-monomers into a wheel–shaped cluster (U70). Dissolution of U70 in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U70-clusters.


DE-NA0003763 Actinide Center of Excellence

Center for Hierarchical Waste Form Materials

Basic Energy Sciences

Find out more...


Email Address of Submitting Author


Oregon State University


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare no competing interests