ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Structure of Electronically Reduced N-Donor Bidentate Ligands and Their Heteroleptic Four-Coordinate Zinc Complexes: A Survey of DFT Results

preprint
submitted on 20.12.2018, 16:55 and posted on 21.12.2018, 15:30 by Madanakrishna Katari, Duncan Carmichael, Denis Jacquemin, Gilles Frison
The role of Hartree-Fock exchange in describing the structural changes occurring upon reduction of bipyridine-based ligands and their complexes is investigated in the framework of density functional theory calculations. A set of 4 free ligands in their neutral and radical anionic forms, and 2 of their zinc complexes in their dicationic and monocationic radical forms, is used to compare a large panel of pure, conventional, and long-range corrected hybrid DFT functionals; coupled cluster single and double calculations are used alongside experimental results as benchmarks. Particular attention has been devoted to the magnitude of the change, upon reduction, of the D-parameter, which measures the difference between the Cpy-Cpy and the C-N bond lengths in bipyridine ligand and is known to experimentally correlate with the charge of the ligands. Our results indicate that the structural changes significantly depend on the amount of exact exchange included in the functional. A progressive evolution is observed for the free ligands, whereas two distinct sets of results are obtained for the complexes. Functionals with a small degree of HF exchange, e.g., B3LYP, do not adequately describe geometric changes for the considered species and, quite surprisingly, the same holds for the CC2 method. The best agreement to experimental and CCSD values is obtained with functionals including a significant but not excessive part of exact exchange, e.g., CAM-B3LYP, M06-2X, and wB97X-D. The location of the added electron upon reduction, which depends on the self-interaction error, is used to rationalize these outcomes.

History

Email Address of Submitting Author

gilles.frison@polytechnique.edu

Institution

CNRS & Ecole polytechnique

Country

France

ORCID For Submitting Author

0000-0002-5677-3569

Declaration of Conflict of Interest

The authors declare no conflict of interest

Exports