These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Strain_in_STO(4).pdf (11.14 MB)

Strain Induced Tunability of the Electronic Properties of SrTiO3 Interfaces

submitted on 01.11.2019 and posted on 20.11.2019 by Zhenyun Lan, Tejs Vegge, Ivano E. Castelli
SrTiO 3 (STO) films are widely used as substrates in oxide devices. Although STO is one of the most studied materials, both experimentally and computationally, the effect of strain at the interface is almost completely ignored. In this work, we perform Density Functional Theory (DFT) calculations using the SCAN meta-GGA exchange-correlation functional to study the effect of uniaxial- and biaxial-strain on structural and electronic properties of STO interfaces. We find that under tensile uniaxial-strain, the band gap increases significantly, as a consequence of a large tilting in the octahedra. On the other side, under compression, the band gap is almost constant. Similar effects are seen for tensile biaxial strain, while for compressive strain, the gap first increases and then decreases, due to the temporary appearance of a polar distortion. In addition, we observe an orbital inversion at the conduction-band edge under different uni/bi-axial-strain conditions. This work provides a new perspective of the use of strain to modulate the structural and electronic properties of perovskite film materials for multiple applications.


Email Address of Submitting Author


Technical University of Denmark



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflicts


Logo branding