Stimuli-Responsive Particle-Based Amphiphiles as Active Colloids Prepared by Anisotropic Click Chemistry

29 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Amphiphiles alter the energy of surfaces, but the extent of this feature is typically constant. Smart systems with amphiphilicity as a function of an external, physical trigger are desirable. As a trigger, the exposure to a magnetic field, in particular, is desired because it is not shielded in water. Amphiphiles like surfactants are well known, but the magnetic response of molecules is typically weak. Vice-versa, magnetic particles with strong response to magnetic triggers are fully established in nanoscience, but they are not amphiphilic. In this work colloids with Janus architecture and ultra-small dimensions (25nm) have been prepared by spatial control over the Thiol-Yne click modification of organosilica-magnetite core-shell nanoparticles. The amphiphilic properties of these anisotropically modified particles are proven. Finally, a pronounced and reversible change in interfacial stabilization results from the application of a weak (<<1T) magnetic field.

Keywords

organosilica nanoparticles functionalized
core-shell structures
Janus character
Active colloids
Smart Materials

Supplementary materials

Title
Description
Actions
Title
MagJanus 28Jan2020 ESI FINAL
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.