These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.

Steric Protection of Rhodium-Nitridyl Radical Species

submitted on 26.05.2019 and posted on 28.05.2019 by Christophe Rebreyend, Valentinos Mouarrawis, Jarl Ivar van der Vlugt, Bas de Bruin
In an attempt to synthesize a mononuclear rhodium nitridyl complex with a reduced tendency to undergo nitridyl radical N-N coupling we synthesized a bulky analog of Milstein’s bipyridine-based PNNH ligand, bearing a tert-butyl group at the 6’ position of the bipyridine moiety. A three-step synthetic route toward this new bulky tBu3PNNH ligand was developed, involving a selective nucleophilic substitution step, followed by a Stille coupling and a final hydrophosphination step to afford the desired 6-(tert-butyl)-6'-((di-tert-butylphosphino)methyl)-2,2'-bipyridine (tBu3PNNH) ligand. This newly developed tBu3PNNH ligand was incorporated in the synthesis of the sterically protected azide complex [Rh(N3)(tBu3PNNH)]. We explored N2 elimination form this species using photolysis and thermolysis, hoping to synthesize a mononuclear rhodium complex with a terminal nitrido moiety. Characterization of the reaction product(s) using NMR, coldspray HR-ESI-MS and EPR spectroscopy shows that the material is both EPR and NMR silent, and data obtained by MS spectrometry revealed masses corresponding with both monomeric and dimeric nitrido/nitridyl complexes. The combined data point to formation of a paramagnetic [(tBu3PNN)Rh(µ-N)Rh(tBu3PNN)] species. It thus seems that despite its three tBu groups the new ligand is not bulky enough to prevent formation of Rh-N-Rh bridged species. However, the increased steric environment does prevent further reaction with carbon monoxide, which is unable to coordinate to rhodium.


The Netherlands Organization for Scientific Research (NWO-CW VICI project 016.122.613).

University of Amsterdam (Research Priority Area Sustainable Chemistry).


Email Address of Submitting Author


University of Amsterdam


The Netherlands

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest