Specific-Ion Effects Directed Noble Metal Aerogels: Versatile Manipulation for Electrocatalysis and Beyond

Noble metal foams (NMFs) are a new class of functional porous materials featuring properties of both noble metals and monolithic porous materials, providing impressive prospects in catalysis, bio-sensing, plasmonic technologies, etc...Among reported synthetic methods to date, the sol-gel approach manifests overwhelming advantages for versatile synthesis of controlled nanostructured NMFs under mild condition. However, limited gelation methods and insufficient understanding of the underlying mechanism retards structure/composition manipulation of NMFs, hampering ondemand designing for practical applications. Herein highly tunable NMFs are fabricated at room temperature by activating specific-ion effects and regulating ion-nanoparticle interactions, affording various single/alloy NMFs with adjustable compositions (Au, Ag, Pd, Pt), ligament sizes (3.1~142.0 nm), and special morphologies. Their superior performance in programmable self-propulsion devices and electrocatalytic alcohol oxidation are demonstrated. This study provides not only a conceptually new route to fabricate and manipulate functional NMFs, but also an overall picture in understanding the gelation mechanism. It may pave the way for on-target designing versatile NMFs for various applications.