These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
0006.01-KRISTYAN-ICNAAM2019-TNRS-preprint.pdf (444.22 kB)

Solving the Non-Relativistic Electronic Schrödinger Equation with Manipulating the Coupling Strength Parameter over the Electron-Electron Coulomb Integrals

submitted on 16.08.2019 and posted on 19.08.2019 by Sandor Kristyan
The non-relativistic electronic Hamiltonian, H(a)= Hkin+Hne+aHee, extended with coupling strength parameter (a), allows to switch the electron-electron repulsion energy off and on. First, the easier a=0 case is solved and the solution of real (physical) a=1 case is generated thereafter from it to calculate the total electronic energy (Etotal electr,K) mainly for ground state (K=0). This strategy is worked out with utilizing generalized Moller-Plesset (MP), square of Hamiltonian (H2) and Configuration interactions (CI) devices. Applying standard eigensolver for Hamiltonian matrices (one or two times) buys off the needs of self-consistent field (SCF) convergence in this algorithm, along with providing the correction for basis set error and correlation effect. (SCF convergence is typically performed in the standard HF-SCF/basis/a=1 routine in today practice.)


OTKA-K 2015-115733 and 2016-119358


Email Address of Submitting Author


Res. Centre for Nat. Sci., Hung. Acad. of Sci., Institute of Materials and Environmental Chemistry



ORCID For Submitting Author


Declaration of Conflict of Interest