These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Snapshots of Ce70 Toroid Assembly from Solids and Solution

submitted on 17.04.2021, 01:25 and posted on 19.04.2021, 10:22 by Ian Colliard, Jessica C. Brown, Dylan B. Fast, Ashleigh Sockwell, Amy Hixon, May Nyman
Crystallization at the solid-liquid interface is difficult to spectroscopically observe and therefore challenging to understand and ultimately control at the molecular level. The Ce70-torroid formulated [CeIV70(OH)36(O)64(SO4)60(H2O)10] 4- , part of a larger emerging family of MIV70- materials (M=Zr, U, Ce), presents such an opportunity. We have elucidated assembly mechanisms by X-ray scattering (small-angle scattering and total scattering) of solutions and solids, as well as crystallizing and identifying fragments of Ce70 by single-crystal X-ray diffraction. Fragments show evidence for templated growth (Ce5, [Ce5(O)3(SO4)12] 10- ) and modular assembly from hexamer (Ce6) building units (Ce13, [Ce13(OH)6(O)12(SO4)14(Η2Ο)14] 6- and Ce62, [Ce62(OH)30(O)58(SO4)58] 14- ). Ce62, an almost complete ring, precipitates instantaneously in the presence of ammonium cations as two torqued arcs that interlock by hydrogen boding through NH4 +, which can also be replaced by other cations, demonstrated with CeIII. Room temperature rapid assembly of both Ce70 and Ce62, respectively, by addition of Li+ and NH4 +, along with ion?exchange and redox behavior, invite exploitation of this emerging material family in environmental and energy applications.





Email Address of Submitting Author


Oregon State University


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

The authors have no conflict of interest to declare