Smart molecular/MoS2 Heterostructures Featuring Light and Thermally-Induced Strain Driven by Spin Switching

17 July 2020, Version 1

Abstract

In this work we exploit the ability of spin-crossover molecules to switch between two spin states, upon the application of external stimuli, to prepare smart molecular/2D heterostructures. Through the chemical design of the hybrid interface, that involves a covalent grafting between the two components, we obtain a hybrid heterostructure formed by spin-crossover nanoparticles anchored on chemically functionalized monolayers of semiconducting MoS2. In the resulting hybrid, the strain generated by the molecular system over the MoS2 layer, as a consequence of a thermal or light-induced spin switching, results in a dramatic and reversible change of its electrical and optical properties. This novel class of smart molecular/2D heterostructures could open the way towards a novel generation of hybrid multifunctional materials and devices of direct application in highly topical fields like electronics, spintronics or molecular sensing.

Keywords

spin-crossover
transition metal dichalcogenides
nanoparticles
strain
2D heterostructures
molybdenum disulfide

Supplementary materials

Title
Description
Actions
Title
SI SCOMoS2 r
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.