Fast Fragmentation During Surface-Induced Dissociation: An Examination of Peptide Size and Structure

12 June 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present the results of direct dynamics simulations of surface-induced dissociation for protonated versions of A$_\mathrm{n}$K, KA$_\mathrm{n}$ (n = 1, 3, and 5), AcA$_\mathrm{7}$K, and AcKA$_\mathrm{7}$ for collisions with a fluorinated self-assembled monolayer surface. We focus on elucidating fast fragmentation events, which takes place in coincidence with the collision event. Such events generate a large number of products, and hence, are not easily understood through chemical intuition. Our simulations show distinct differences between the A$_{\mathrm{n}}$K/AcA$_\mathrm{7}$K and KA$_{\mathrm{n}}$/AcKA$_7$ series of peptides, with the former being more reactive, and the latter more selective. Backbone rearrangements and sidechain fragmentation are also seen.

Keywords

Tandem Mass Spectrometry
Direct Dynamics Simulations
Surface-Induced Dissociation
Shattering Fragmentation
Fast Fragmentation Events

Supplementary materials

Title
Description
Actions
Title
SID A7K KA7 sup
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.