Selective Functionalization at N2-Position of Guanine in Oligonucleotides via Reductive Amination

22 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemo- and site-specific modifications in oligonucleotides have wide applicability as mechanistic probes in chemical biology. Here we have employed a classical reaction in organic chemistry, reductive amination, to selectively functionalize the N2-amine of guanine/2’-deoxyguanine monophosphate. This method specifically modifies guanine in several tested DNA oligonucleotides, while leaving the other bases unaffected. Using this approach, we have successfully incorporated desired handles chemoselectively into DNA oligomers.

Keywords

Guanine modification
reductive amination
nucleic acid
chemoselectivity

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.