These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Modelling Diffusion in Honeycomb Layered Oxides__chermrxiv_version.pdf (4.51 MB)

Modelling Cationic Diffusion in Nickel-Based Honeycomb Layered Tellurates using Vashishta-Rahman Interatomic Potential and Relevant Insights

revised on 06.03.2021, 06:10 and posted on 08.03.2021, 10:37 by Kartik Sau, Tamio Ikeshoji, Godwill Mbiti Kanyolo, Titus Masese
Although the fascinatingly rich crystal chemistry of honeycomb layered oxides has been accredited as the propelling force behind their remarkable electrochemistry, the atomistic mechanisms surrounding their operations remain unexplored. Thus, herein, we present an extensive molecular dynamics study performed systematically using a refined set of inter-atomic potential parameters of A2Ni2TeO6 (where A = Li, Na, and K). We demonstrate the effectiveness of the Vashishta-Rahman form of the interatomic potential in reproducing various structural and transport properties of this promising class of materials and predict an exponential increase in cationic diffusion with larger interlayer distances. The simulations further demonstrate the correlation between broadened inter-layer (inter-slab) distances associated with the larger ionic radii of K and Na compared to Li and the enhanced cationic conduction exhibited in K2Ni2TeO6 and Na2Ni2TeO6 relative to Li2Ni2TeO6. Whence, our findings connect lower potential energy barriers, favourable cationic paths and wider bottleneck size along the cationic diffusion channel within frameworks (comprised of larger mobile cations) to the improved cationic diffusion experimentally observed in honeycomb layered oxides. Furthermore, we explicitly study the role of inter-layer distance and cationic size in cationic diffusion. Our theoretical studies reveal the dominance of inter-layer distance over cationic size, a crucial insight into the further performance enhancement of honeycomb layered oxides.


Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number 19K15685)

National Institute of Advanced Industrial Science and Technology (AIST)

Japan Prize Foundation


Email Address of Submitting Author


National Institute of Advanced Industrial Science and Technology (AIST)



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest