ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Revealing Ultrafast Two-Electron Transfer Over Tryptophan with Mass Spectrometry

preprint
submitted on 16.06.2020, 14:24 and posted on 18.06.2020, 05:19 by Hongying Zhong, Yinghua Qi, Ruowei Jiang, Weidan Li, Xiaojie Yang, Shanshan Jia
Electron transfer crucial to bioenergetics is ubiquitously present in biological systems but most of them escape from direct observations. By using tryptophan and its derivatives with 1-CH3, 2-CH3, 5-CH3 and 5-OH substitutions as model molecules, we have unambiguously demonstrated successive two-electron transfer to tryptophan as well as electronic and vibrational excited molecular dissociation with mass spectrometry. The ultra-short time delay between two electrons down to sub-attosecond over a distance less than 10 Å was found to cause the strong coupling of electronic and vibrational excitations that was validated by the observation of radical-radical coupling. Intramolecular H migrations along with two-electron transfer was demonstrated with H/D exchange and 13C stable isotope labeling. This proposed technique allows us to observe the ultrafast electron transfer from tryptophan to the heme group in myoglobin proteins. It bridges electron transfer to energy transfer that has been revealed in FRET alone. FeII (porph•‐) and FeI (porph•‐) resulting from one- and two-electron transfer, respectively, have been unambiguously identified

History

Email Address of Submitting Author

hyzhong@mail.ccnu.edu.cn

Institution

Central China Normal University

Country

P. R. China

ORCID For Submitting Author

0000-0003-2733-7909

Declaration of Conflict of Interest

We declare no conflict of interest

Exports