Revealing Hidden Debottlenecking Potential in Flare Systems on Offshore Facilities Using Dynamic Simulations -- a Preliminary Investigation

20 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Three flare systems are modeled and total plant depressurization is investigated using dynamic simulations in order to access the debottlenecking potential. Usually steady-state simulation of the flare network is used for sizing and rating of the flare system. By using dynamic simulations effects from line packing in the flare system can be studied. The results show that peak flow during a dynamic simulations is significantly lower than the peak flow used in a steady-state case.
The three systems investigated span a wide range in flare system size, both in terms of number of process segments disposing into the flare network, in terms of peak design rate and the flare network pipe dimensions and total hold-up volume. Generally, it is observed that the larger the flare system, the larger debottlenecking potential.

Keywords

Emergency depressurization
Flare network
Debottlenecking
Dynamic simulation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.