These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Resolving the Quadruple Bonding Conundrum in C2 Using Insights Derived from Excited State Potential Energy Surfaces: A Molecular Orbital Perspective

submitted on 24.12.2019, 05:36 and posted on 26.12.2019, 10:16 by Ishita Bhattacharjee, Debashree Ghosh, Ankan Paul
The question of quadruple bonding in C2 has emerged as a hot button issue, with opinions sharply divided between the practitioners of Valence Bond (VB) and Molecular Orbital (MO) theory. Here, we have systematically studied the Potential Energy Curves (PECs) of low lying high spin sigma states of C2, N2 and Be2 and HC≡CH using several MO based techniques such as CASSCF, RASSCF and MRCI. The analyses of the PECs for the 2S+1Σg/u (with 2S+1=1,3,5,7,9) states of C2 and comparisons with those of relevant dimers and the respective wavefunctions were conducted. We contend that unlike in the case of N2 and HC≡CH, the presence of a deep minimum in the 7Σ state of C2 and CN+ suggest a latent quadruple bonding nature in these two dimers. Hence, we have struck a reconciliatory note between the MO and VB approaches. The evidence provided by us can be experimentally verified, thus providing the window so that the narrative can move beyond theoretical conjectures.


CSIR, India


Email Address of Submitting Author


Indian Association for the Cultivation of Science



ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare no conflict of interest