Reaction on a Rink: Kondo-Enhanced Heterogeneous Single-Atom Catalysis

26 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Boosting the efficiency of heterogeneous single-atom catalysts (SACs) by adjusting the microenvironment of the active atom has recently attracted enormous attention. However, attempts to tune the spin-spin interaction between the SAC and its microenvironment have remained rather scarce. Some interesting questions can be raised, among which a fundamental one is: can the surrounding environment influence the local spin state of an SAC, and if so, can such influence be utilized to enhance the catalytic activity?

In this work, we explore such a possibility by investigating the thermochemical effect of Kondo screening of a local atomic spin by free electrons in the metal support. Inspired by the exothermicity of the spin-screening interaction, a novel approach to heterogeneous catalysis -- reaction on a rink (ROAR) -- is proposed. In contrast to the conventional notion of thermal catalytic reaction, lowering the temperature of metal support is predicted to result in a reduced reaction barrier. As a proof of concept, CO oxidation catalyzed by the Co@CoPc/Au(111) composite is scrutinized. By combining the density functional theory and a hierarchical equations of motion approach, it predicts that the existing s-d hybridization between the magnetic d orbital of Co adatom and the substrate metallic states in the transition state will lower the free energy barrier and accelerate the reaction rate. Furthermore, if the strength of s-d hybridization is enlarged, a more appreciable speedup will be achieved.

This work highlights the potential usefulness of the spin degrees of freedom to heterogeneous single-atom catalysis, and our proposed ROAR approach could open up a new horizon for exploiting the role of atomic spin in chemical reactions.


Keywords

single-atom catalysis
low temperature reaction
Kondo spin-screening
microenvironment
CO oxidation

Supplementary materials

Title
Description
Actions
Title
Reaction on a rink SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.