These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Random Versus Systematic Errors in Reaction Enthalpies Computed Using Semi-empirical and Minimal Basis Set Methods

revised on 23.03.2018, 06:43 and posted on 23.03.2018, 11:15 by Jimmy Kromann, Alexander Welford, Anders Steen Christensen, Jan H. Jensen
The connectivity-based hierarchy (CBH) protocol for computing accurate reaction enthalpies developed by Sengupta and Raghavachari is tested for fast ab initio methods (PBEh-3c, HF-3c, and HF/STO- 3G), tight-binding DFT methods (GFN-xTB, DFTB, and DFTB-D3), and NDDO-based semiempirical methods (AM1, PM3, PM6, PM6-DH+, PM6-D2, PM6-D3H+, PM6-D3H4X, PM7, and OM2) using the same set of 25 reactions as in the original study. For the CBH-2 scheme, which reflects the change in the immediate chemical environment of all the heavy atoms, the respective MUE relative to G4 for PBEh-3c, HF-3c, HF/STO-3G, GFN-xTB, DFTB-D3, DFTB, PM3, AM1, PM6, PM6-DH+, PM6-D3, PM6-D3H+, PM6-D3H4X, PM7, and OM2 are 1.9, 2.4, 3.0, 3.9, 3.7, 4.5, 4.8, 5.5, 5.4, 5.3, 5,4, 6.5, 5.3, 5.2, and 5.9 kcal/mol, with a single outlier removed for HF-3c, PM6, PM6-DH+, PM6-D3, PM6-D3H4X, and PM7. The increase in accuracy for the NDDO-based methods is relatively modest due to the random errors in predicted heats for formation.


Email Address of Submitting Author


University of Copenhagen



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest



Logo branding