These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethyleneglycol-Based Lithium Electrolytes

submitted on 19.04.2020, 14:54 and posted on 21.04.2020, 13:05 by Bo Qiao, Somesh Mohapatra, Jeffrey Lopez, Graham Leverick, Ryoichi Tatara, Yoshiki Shibuya, Yivan Jiang, Arthur France-Lanord, Jeffrey C. Grossman, Rafael Gomez-Bombarelli, Jeremiah Johnson, Yang Shao-Horn

Molecular details often dictate the macroscopic properties of materials, yet, due to their vastly different length scales, relationships between molecular structure and bulk properties are often difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)-LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG-LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective.


Toyota Research Institute


Email Address of Submitting Author


Massachusetts Institute of Technology


United States

ORCID For Submitting Author


Declaration of Conflict of Interest