These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
PyDANCBZ_HTM.pdf (1.39 MB)

Pyridine Bridging Diphenylamine-Carbazole with Linking Topology as Rational Hole Transporter for Perovskite Solar Cells Fabrication

submitted on 15.04.2020, 21:31 and posted on 20.04.2020, 05:43 by Peng Huang, Manju -, Samrana Kazim, Gangala Sivakumar, Manuel Salado, Rajneesh Misra, Shahzada Ahmad

Developing cost-effective and rational hole transporting materials is critical for fabricating high-performance perovskite solar cells (PSCs) and to promote their commercial endeavor. We have designed and developed pyridine (core) bridging diphenylamine-substituted carbazole (arm) small molecules, named as 2,6PyDANCBZ and 3,5PyDANCBZ. The linking topology of core and arm on their photophysical, thermal, semiconducting and photovoltaic properties were probed systematically. We found that the 2,6PyDANCBZ shows higher mobility and conductivity along with uniform film-forming ability as compared to 3,5PyDANCBZ. The PSCs fabricated with 2,6PyDANCBZ supersede the performance delivered by Spiro-OMeTAD, and importantly also gave improved long-term stability. Our findings put forward small molecules based on core-arm linking topology for cost-effective hole selective layers designing.


H2020-European Research Council


Email Address of Submitting Author


BCMaterials-Basque Center for materials, Applications & Nanostructures



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest to declare

Version Notes

Submitted version