ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Prevention of UVI Precipitation in Alkaline Aqueous Solutions by the Siderophore Desferrioxamine B.pdf (649.17 kB)

Prevention of UVI Precipitation in Alkaline Aqueous Solutions by the Siderophore Desferrioxamine B

preprint
submitted on 01.10.2020 and posted on 01.10.2020 by Matthew Kirby, Jason Louis Sonnenberg, Jonathan S. Watson, Dominik Weiss

In alkaline and saline solutions, uranium VI (UVI) forms uranyl salts, limiting its mobility in leachates released from nuclear waste repositories into groundwater. However, recent experimental and computational work suggested that natural organic molecules widely present in groundwater such as siderophores could potentially prevent solid precipitation because of the formation of stable UVI-siderophore complexes. It is important we assess the impact of siderophores on aqueous UVI chemistry as they could mobilise UVI from contaminated land and radioactive waste storage and disposal sites. Here we test this hypothesis by combining for the first time experimental studies on uranium precipitation in alkaline pH in the presence of desferrioxamine B (DFOB) and electron structure method calculation of uranyl – hydroxamate complexes to assess their stability. Stirred batch experiments containing 0 to 420 µM DFOB, 42 µM UVI and 0.1 M NaCl were conducted at pH 11.5. DFT was employed to explore the relative stability of different UVI-hydroxamate complexes, representative of the local binding mode of DFOB. During the stirred batch experiments, 5%, 11-12%, 41-53%, 95-96% and 100% of UVI passes through the filter membranes (0.2-1 µm pore diameter) after 24 hours when 0, 4.2, 42, 130 and 420 µM DFOB was added to solution. The DFT results suggest one hydroxamate functional group is most likely to complex with UVI with ∆rG calculated as +3 kJ/mol and -9 kJ/mol for [UO2(OH)3(Lmono)]2- and [UO2(OH)2(L)]- respectively. Conversion of the experimentally derived log β (-1.2 ± 0.3) through the equation ∆rG = -2.303RTlogβ provides ∆rG of +7 kJ/mol, similar to the ∆rG of these two complexes. The results of our study confirm that UVI precipitation could be hindered by the formation of a DFOB complex with UVI complexation through a single hydroxamate functional group as a likely mechanism. These results highlight the mobilising effect siderophores have on UVI from contaminant sources and need to be incorporated in environmental risk assessment studies.

Funding

Hydromechanical and Biogeochemical Processes in Fractured Rock Masses in the Vicinity of a Geological Disposal Facility for Radioactive Waste

Natural Environment Research Council

Find out more...

History

Email Address of Submitting Author

matt_110@hotmail.co.uk

Institution

Imperial College London

Country

United Kingdom

ORCID For Submitting Author

0000-0001-5105-5675

Declaration of Conflict of Interest

there are no conflict of interest

Version Notes

This is version 1 of the manuscript

Exports

Logo branding

Exports