These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Precise Identification and Chraracterization of Catalytically Active Site on the surface of g-Alumina.pdf (3.1 MB)

Precise Identification and Characterization of Catalytically Active Sites on the Surface of γ-Alumina

submitted on 10.02.2020 and posted on 11.02.2020 by Konstantin Khivantsev, Nicholas R. Jaegers, Ja-Hun Kwak, János Szanyi, Libor Kovarik

γ-alumina is one of the oldest and most important commercial catalytic materials with high surface area and stability. These attributes enabled its use as the first commercial large-scale heterogeneous catalyst for ethanol dehydration. Despite progress in materials characterization and over a hundred years of active research, the nature of the specific sites on the surface of γ-alumina which are responsible for its unique catalytic properties has remained obscure and controversial. Herein, we identify for the first time using combined infrared spectroscopy, electron microscopy and solid-state nuclear magnetic resonance measurements that the octahedral amphoteric (O)5Al(VI)-OH sites on the massively restructured (110) facets on typical rhombus-platelet γ-alumina as well as (100) segments of irrational surfaces (invariably always present in all γ-alumina samples) are largely responsible for its unique catalytic activity. Such (O)5Al(VI)-OH sites are also present on macroscopically defined (100) facets γ-alumina of different, more elongated/rod-like geometry. They anchor organometallic fragments and isolated metal atoms. The exact mechanism by which these sites lose -OH group upon thermal dehydroxylation is clarified, resulting in coordinatively unsaturated penta-coordinate Al+3O5 sites that can activate nitrogen. These coordinatively unsaturated Al penta-coordinate sites demonstrate new chemistry, producing the first well-defined thermally stable Al-carbonyl complexes. Our findings reunite and successfully clarify the contradictory findings in the literature over the last century, illuminating the true nature and the relationship between the catalytically active and coordinatively unsaturated Al sites on the surface of γ-alumina.


The research at PNNL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences Catalysis Program (DE-AC05-RL01830, FW-47319). Experiments were conducted in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RL01830


Email Address of Submitting Author


Pacific Northwest National Laboratory


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest to declare

Version Notes

Version 1.0