ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Plasma-Catalytic Ammonia Synthesis Beyond the Equilibrium Limit

preprint
submitted on 30.01.2020, 00:11 and posted on 31.01.2020, 18:00 by Prateek Mehta, Patrick M. Barboun, Yannick Engelmann, David B. Go, Annemie Bogaerts, William F. Schneider, Jason C. Hicks
We explore the consequences of non-thermal plasma activation on product yields in catalytic ammonia synthesis, a reaction that is equilibrium-limited at elevated temperatures. We employ a minimal microkinetic model that incorporates the influence of plasma activation on N2 dissociation rates to predict NH3 yields into and across the equilibrium-limited regime. NH3 yields are predicted to exceed bulk thermodynamic equilibrium limits on materials that are thermal-rate-limited by N2 dissociation. In all cases, yields revert to bulk equilibrium at temperatures at which thermal reaction rates exceed plasma-activated ones. Beyond-equilibrium NH3 yields are observed in a packed bed dielectric-barrier-discharge reactor and exhibit sensitivity to catalytic material choice in a way consistent with model predictions. The approach and results highlight the opportunity to exploit synergies between non-thermal plasmas and catalysts to affect transformations at conditions inaccessible through thermal routes.

Funding

FA9550-18-1-0157

DE-SC-0016543

History

Email Address of Submitting Author

pmehta1@alumni.nd.edu

Institution

University of Notre Dame

Country

USA

ORCID For Submitting Author

0000-0001-6233-8072

Declaration of Conflict of Interest

No conflict of interest

Exports

ChemRxiv

Exports