Organic Photoredox-Catalyzed Cycloadditions Under Single-Chain Polymer Confinement

08 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cooperative catalysis enables synthetic transformations that are not feasible using monocatalytic systems. Such reactions are often diffusion controlled and require multiple catalyst interactions at high dilution. We developed a confined dual-catalytic polymer nanoreactor that enforces catalyst co-localization to enhance reactivity in a fully-homogeneous system. The photocatalyzed-dimerization of substituted styrenes is disclosed using confined-single-chain polymers bearing triarylpyrylium-based pendants, with pyrene as an electron relay catalyst. Enhanced reactivity with low catalyst loadings was observed compared to monocatalytic polymers with small-molecule additives. Our approach realizes a dual-catalytic single-chain polymer that provides enhanced reactivity under confinement, presenting a further approach for diffusion-limited-photoredox catalysis.

Keywords

photoredox catalysis
dual catalysis
cyclodimerization
single-chain polymer nanoparticles

Supplementary materials

Title
Description
Actions
Title
Elacqua Dimerization SI final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.