These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
4 files

Operando Monitoring the Insulator-Metal Transition of LiCoO2

submitted on 25.02.2021, 09:23 and posted on 26.02.2021, 13:45 by Eibar Flores, Nataliia Mozhzhukhina, Ulrich Aschauer, Erik Berg
LiCoO2 (LCO) is one of the most-widely used cathode active materials for Li-ion batteries. Even though the material undergoes an electronic two-phase transition upon Li-ion cell charging, LCO exhibits competitive performance in terms of rate capability. Herein the insulator-metal transition of LCO is investigated by operando Raman spectroscopy complemented with DFT calculations and a newly-developed sampling volume model. We confirm the presence of a Mott insulator α-phase at dilute Li-vacancy concentrations (x > 0.87) that transforms into a metallic β-phase at x < 0.75. In addition, we find that the charge-discharge intensity trends of LCO Raman-active bands exhibit a characteristic hysteresis, which, unexpectedly, narrows at higher cycling rates. When comparing these trends to a newly-developed numerical model of laser penetration into a spatially-heterogeneous particle we provide compelling evidence that the insulator-metal transition of LCO follows a two-phase route at very low cycling rates, which is suppressed in favor of a solid-solution route at rates above 10 mA/gLCO (~C/10). The observations explain why LCO exhibits competitive rate capabilities despite being observed to undergo an intuitively slow two-phase transition route: a kinetically faster solid-solution transition route becomes available when the active material is cycled at rates >C/10. Operando Raman spectroscopy combined with sample volume modelling and DFT calculations is shown to provide unique insights into fundamental processes governing the performance of state-of-the-art cathode materials for Li-ion batteries.


Swiss National Science Foundation Ambizione Energy Grant 160540

Knut and Alice Wallenberg (KAW) Foundation (Grant 2017.0204)


Email Address of Submitting Author


Technical University Denmark



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest.