These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Nitrile-Substituted 2-(Oxazolinyl)-Phenols: Minimalistic Excited-State Intramolecular Proton Transfer (ESIPT)-Based Fluorophores

submitted on 01.02.2020, 08:35 and posted on 03.02.2020, 11:46 by Dominik Göbel, Daniel Duvinage, Tim Stauch, Boris Nachtsheim
Herein, we present minimalistic single-benzene, excited-state intramolecular proton transfer (ESIPT) based fluorophores as powerful solid state emitters. The very simple synthesis gave access to all four regioisomers of nitrile-substituted 2(oxazolinyl)phenols (MW = 216.1). In respect of their emission properties they can be divided into aggregation-induced emission enhancement (AIEE) luminophores (1-CN and 2-CN), dual state emission (DSE) emitters (3-CN) and aggregation-caused quenching (ACQ) fluorophores (4‐CN). Remarkably, with compound 1-CN we discovered a minimalistic ESIPT based fluorophore with extremely high quantum yield in the solid state ΦF = 87.3% at λem = 491 nm. Furthermore, quantum yields in solution were determined up to ΦF = 63.0%, combined with Stokes shifts up till 11.300 cm–1. Temperature dependent emission mapping, crystal structure analysis and time-dependent density functional theory (TDDFT) calculations gave deep insight into the origin of the emission properties.


Email Address of Submitting Author


University of Bremen



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest to declare

Version Notes

first version