ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
NaI_preprint_Sep12.pdf (742.57 kB)

NaI Revisited: Theoretical Investigation of Predissociation via Ultrafast XUV Transient Absorption Spectroscopy

preprint
submitted on 12.09.2019, 23:17 and posted on 16.09.2019, 15:26 by Yuki Kobayashi, Tao Zeng, Daniel Neumark, Stephen Leone
Avoided crossings can trigger abrupt changes of electronic character and redirect the outcomes of photochemical reactions. Here, we report a theoretical investigation into core-level spectroscopic probing of predissociation dynamics of sodium iodide (NaI), a prototype system for studies of avoided-crossing dynamics. The elegant femtochemistry work of Zewail and co-workers pioneered the real-time dynamics of NaI, detecting the Na atoms bursting forth from the avoided crossing and the residual NaI molecules oscillating inside the quasi-bound potential. The simulated results show that core-level spectroscopy not only observes these integrated outcomes, but also provides a direct measure of the abrupt switching of electronic character at the avoided crossing. The valence and core-excited electronic structures of NaI are computed by spin-orbit general multi-con gurational quasi-degenerate perturbation theory, from which core-level absorption spectra of the predissociation dynamics are constructed. The wave-packet motion on the covalent potential is continuously mapped as shifts in the absorption energies, and the switching between the covalent and ionic character at the avoided crossing is characterized as the sharp rise and fall of the Na+ signal. The Na+ signal is found to be insensitive to the wave-packet motion in the asymptotic part of the ionic potential, which in turn enables a direct measure of the nonadiabatic crossing probability excluding the e ect of wave-packet broadening.

Funding

US Army Research Office (ARO) (W911NF-14- 1-0383)

National Science Foundation (NSF) (CHE-1660417)

Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-2016-06276)

York University start-up grant (481333)

Funai Overseas Scholarship

History

Email Address of Submitting Author

ykoba@berkeley.edu

Institution

UC Berkeley

Country

USA

ORCID For Submitting Author

0000-0002-4391-1328

Declaration of Conflict of Interest

We declare no conflict of interest

Version Notes

a preprint complied on 12 Sep, 2019

Exports

Logo branding

Exports