ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
3 files

Multiwavelets Applied to Metal-Ligand Interactions: Energies Free from Basis Set Errors

preprint
submitted on 31.01.2021, 14:32 and posted on 02.02.2021, 06:39 by Anders Brakestad, Peter Wind, Stig Rune Jensen, Luca Frediani, Kathrin Hopmann
The following article will be submitted to the Journal of Chemical Physics. It is thus not a peer-reviewed manuscript. After it is hopefully accepted for publication, it will be found (in revised form) at https://aip.scitation.org/journal/jcp

Transition metal-catalyzed reactions invariably include steps, where ligands associate or dissociate. In order to obtain reliable energies for such reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision Multiwavelet calculations to compute the metal-ligand association energies for 27 transition metal complexes with common ligands such as H2, CO, olefins and solvent molecules. By comparing our Multiwavelet results to a variety of frequently used Gaussian-type basis sets, we show that counterpoise corrections, which are widely employed to correct for basis set superposition errors, often lead to underbinding. Additionally, counterpoise corrections are difficult to employ, when the association step also involves a chemical transformation. Multiwavelets, which can be conveniently applied to all types of reactions, provide a promising alternative for computing electronic interaction energies free from any basis set errors.

Funding

Hylleraas Center

The Research Council of Norway

Find out more...

TFS2016KHH

Notur: nn9330k

Notur: nn4654k

History

Email Address of Submitting Author

kathrin.hopmann@uit.no

Institution

UiT The Arctic University of Norway

Country

Norway

ORCID For Submitting Author

0000-0003-2798-716X

Declaration of Conflict of Interest

No conflict of interest

Version Notes

This is Version 1, which will be submitted to the Journal of Chemical Physics. After it is published, the revised version will be found at https://aip.scitation.org/journal/jcp

Exports

ChemRxiv

Exports