Multivalency Pattern Recognition to Sort Colloidal Assemblies

23 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Multivalent interactions are an important principle for self-assembly, and have been widely used to assemble colloidal systems. However, binding partners on colloids are typically statistically distributed, which falls short of the possibilities arising from geometrically controlled multivalency patterns as for instance found in viruses. Herein, we use the ultimate precision provided by 3D DNA origamis to introduce colloidal scale multivalency pattern recognition via designing geometrically precise interaction patterns at patches of patchy nanocylinder. This gives rise to self-sorting of colloidal assemblies despite having the same type and number of supramolecular binding motifs – solely based on the pattern located on a 20 x 20 nm cross section. The degree of sorting can be modulated by the geometric overlap of patterns and homo, mixed and alternating supracolloidal polymerizations are demonstrated. We demonstrate that geometric positioning of multivalency patterns provides additional control to organize soft matter, and we believe the concept to be of importance for engineering biological response and to be generalizable for other precision nanoparticles and soft matter objects.

Keywords

Self-assembly
Patchy Colloids
Nanoparticles
Host/Guest Chemistry
3D DNA Origami
Multivalency

Supplementary materials

Title
Description
Actions
Title
Supporting Info Final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.