ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Multireference Ground and Excited State Electronic Structures of Free- versus Iron Porphyrin-Carbenes

preprint
revised on 24.12.2019 and posted on 26.12.2019 by Gautam Stroscio, Martin Srnec, Ryan Hadt
Iron porphyrin carbenes (IPCs) are important reaction intermediates in engineered carbene transferase enzymes and homogeneous catalysis. However, discrepancies between theory and experiment complicate the understanding of IPC electronic structure (i.e., open- vs. closed-shell singlet (OSS vs. CSS)). Here we investigate the structurally dependent ground and excited spin state energetics of a free carbene and its IPC analogs. Only multireference ab initio wave function methods are consistent with experiment and predict a CSS ground state (Fe(II)←{:C(X)Y}0), contrary to density functional theory (DFT). The OSS is a high-lying metal-to-ligand charge transfer (MLCT) excited state that is sensitive to the nature of the axial ligand. Furthermore, potential energy surfaces (PESs) along the Fe–C bond elongation coordinate exhibit strong mixings between CSS/OSS characters, which can be an important feature for describing reaction mechanisms. Future studies on IPC reaction coordinates should evaluate contributions from ground and excited state multireference character.

History

Email Address of Submitting Author

rghadt@caltech.edu

Institution

California Institute of Technology

Country

United States

ORCID For Submitting Author

0000-0001-6026-1358

Declaration of Conflict of Interest

no conflict of interest

Exports