Modelling-Guided Design of Paper Microfluidic Networks – A Case Study of Sequential Fluid Delivery

23 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Paper-based microfluidic devices are popular for their ability to automate multi-step assays for chemical or biological sensing at a low cost, but the design of paper microfluidic networks has largely relied on experimental trial and error. A few mathematical models of flow through paper microfluidic devices have been developed and have succeeded in explaining experimental flow behaviour. However, the reverse engineering problem of designing complex paper networks guided by appropriate mathematical models is largely unsolved. In this article, we demonstrate that a two-dimensional paper network (2DPN) designed to sequentially deliver three fluids to a test zone on the device can be computationally designed and experimentally implemented without trial and error. This was accomplished by three new developments in modelling flow through paper networks: i) coupling of the Richards equation of flow through porous media to the species transport equation, ii) modelling flow through assemblies of multiple paper materials (test membrane and wicking pad), and iii) incorporating limited-volume fluid sources. We demonstrate the application of this model in the optimal design of a paper-based signal-enhanced immunoassay for a malaria protein, PfHRP2. This work lays the foundation for the development of a computational design toolbox to aid in the design of paper microfluidic networks.

Keywords

Paper-based microfuidics
MicroPADs
Two-dimensional paper networks
Point-of-care Diagnostics
Richards equation
Partial saturation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.