Modeling the Role of a Flexible Loop and Active Site Side Chains in Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase

25 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Glycerol-3-phosphate dehydrogenase is a biomedically important enzyme that plays a crucial role in lipid biosynthesis. It is activated by a ligand-gated conformational change that is necessary for the enzyme to reach a catalytically competent conformation capable of efficient transition state stabilization. While the human form (hlGPDH) has been the subject of extensive structural and biochemical studies, corresponding computational studies to support and extend the experimental observations have been lacking. We perform here detailed empirical valence bond and Hamiltonian replica exchange molecular dynamics simulations of wild-type hlGPDH and its variants, as well as providing a novel crystal structure of the binary hlGPDH·NAD R269A variant where the enzyme is present in the open conformation. We estimated the activation free energies for the hydride transfer reaction in wild-type and substituted variants of hlGPDH and investigated the effect of mutations on the catalysis from a detailed structural study. Our structural data and simulations also illustrate the critical role of the R269 side chain in facilitating the closure of hlGPDH into a catalytically competent conformation, through modulating the flexibility of a key catalytic loop (292-LNGQKL-297), thus rationalizing a tremendous 41,000-fold decrease experimentally in the turnover number, kcat, upon truncating this residue. Taken together, our data highlight the importance of this ligand-gated conformational change in catalysis, a feature that can be exploited both for protein engineering and for the design of novel allosteric inhibitors targeting this biomedically important enzyme.

Keywords

glycerol-3-phosphate dehydrogenase
loop dynamics
transition state stabilization
empirical valence bond
Hamiltonian replica exchange

Supplementary materials

Title
Description
Actions
Title
Kamerlin SupportingInformation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.