These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
VSC2.pdf (1.32 MB)

Mode-Selective Chemistry through Polaritonic Vibrational Strong Coupling

submitted on 09.04.2021, 18:23 and posted on 12.04.2021, 12:47 by Xinyang Li, Arkajit Mandal, Pengfei Huo
Recent experiments have demonstrated remarkable mode-selective reactivities by coupling molecular vibrations with vacuum fluctuations inside an optical cavity. The fundamental mechanism behind such effects, on the other hand, remains elusive. In this work, we theoretically demonstrate the basic principle of how cavity photon frequency can be tuned to achieve mode-selective reactivities. We find that the non-Markovian nature of the radiation mode leads to a cavity frequency-dependent dynamical caging effect of a reaction coordinate, resulting in a suppression of the rate constant. In the presence of multiple competitive reactions, it is possible to preferentially cage a reaction coordinate when the barrier frequencies for competing reaction paths are different. Our theoretical results illustrate the cavity-induced mode-selective chemistry through polaritonic vibrational-strong couplings, revealing the fundamental mechanism for changing chemical selectivities through cavity quantum electrodynamics.


National Sci-ence Foundation CAREER Award under GrantNo. CHE-1845747


Email Address of Submitting Author


University of Rochester


United States

ORCID For Submitting Author


Declaration of Conflict of Interest