Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li6PS5X Argyrodites

11 February 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The rational development of fast–ion-conducting solid electrolytes for all-solid-state lithium-ion batteries requires understanding the key structural and chemical principles that give some materials their exceptional ionic conductivities. For the lithium argyrodites Li6PS5X (X = Cl,Br,I), the choice of the halide, X, strongly affects the ionic conductivity, with room-temperature ionic conductivities for X = {Cl, Br} ×103 higher than for X = I. This variation has been attributed to differing degrees of S/X anion disorder. For X = {Cl, Br} the S/X anions are substitutionally disordered, while for X = I the anion sublattice is fully ordered. To better understand the role of substitutional anion disorder in enabling fast lithium-ion transport, we have performed a first-principles molecular dynamics study of Li6PS5I and Li6PS5Cl, with varying amounts of S/X anion-site disorder. Considering the S/X substructure as a tetrahedrally close-packed lattice, we identify three partially occupied lithium sites that form a contiguous three-dimensional network of face-sharing tetrahedra. The active lithium-ion diffusion pathways within this network, however, depend on the S/X anion configuration. For anion-disordered systems, the active site–site pathways give a percolating three-dimensional diffusion network; whereas for anion-ordered systems, critical site–site pathways are inactive, giving a disconnected diffusion network with lithium motion restricted to local orbits around S positions. Analysis of the lithium substructure and dynamics in terms of the lithium coordination around each sulfur site shows a mechanistic link between substitutional anion disorder and lithium disorder, which enables fast lithium diffusion. In anion-ordered systems the Li-ions are pseudo-ordered, with preferential 6-fold coordination of sulfur sites. Long-ranged lithium diffusion disrupts this SLi6 pseudo-ordering, and is therefore disfavoured. In anion-disordered systems, a uniform 6-fold S–Li coordination is frustrated due to Li–Li Coulombic repulsion. Lithium positions become disordered, giving a range of S–Li coordination environments. Long-ranged Li diffusion is now possible with no net change in S–Li coordination numbers. This gives rise to superionic lithium transport in the anion-disordered systems, which is effected by a concerted string-like diffusion mechanism.

Keywords

solid electrolytes
argyrodites
molecular dynamics

Supplementary materials

Title
Description
Actions
Title
si
Description
Actions
Title
TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.