ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Mechanistic Aspects of a Surface Organovanadium(III) Catalyst for Hydrocarbon Hydrogenation and Dehydrogenation

preprint
revised on 10.06.2019 and posted on 12.06.2019 by David Kaphan, Magali Ferrandon, Ryan R. Langeslay, Gokhan Celik, Evan Wegener, Cong Liu, Jens Niklas, Oleg Poluektov, Massimiliano Delferro
Understanding the mechanisms of action for base metal catalysis of transformations typically associated with precious metals is essential for the design of new technologies for a sustainable energy economy. Isolated transition metal and post-transition metal catalysts on oxides such as silica are generally proposed to effect hydrogenation and dehydrogenation by a mechanism featuring either σ-bond metathesis or heterolytic bond cleavage as the key bond activation step. In this work an organovanadium(III) complex on silica, which is a precatalyst for both olefin hydrogenation and alkane dehydrogenation, is interrogated by a series of reaction kinetics and isotopic labeling studies in order to shed light on the operant mechanism for hydrogenation. The kinetic dependencies of the reaction components are potentially consistent with both the σ-bond metathesis and the heterolytic bond activation mechanisms, however, a key deuterium incorporation experiment definitively excludes the simple σ-bond metathesis mechanism. Alternatively a two electron redox cycle, rarely invoked for homologous catalyst systems, is also consistent with experimental observations. Evidence supporting the formation of a persistent vanadium(III) hydride upon hydrogen treatment of the as prepared material is also presented.

History

Email Address of Submitting Author

kaphand@anl.gov

Institution

Argonne National Laboratory

Country

United States

ORCID For Submitting Author

0000-0001-5293-7784

Declaration of Conflict of Interest

The authors declare no conflict of interest

Exports