These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
MRS_0802.pdf (9.32 MB)

Materials Genes of Heterogeneous Catalysis from Clean Experiments and Artificial Intelligence

submitted on 16.02.2021, 21:37 and posted on 17.02.2021, 13:20 by Lucas Foppa, Luca Ghiringhelli, Frank Girgsdies, Maike Hashagen, Pierre Kube, Michael Hävecker, Spencer J. Carey, Andrey Tarasov, Peter Kraus, Frank Rosowski, Robert Schlögl, Annette Trunschke, Matthias Scheffler
Heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes, e.g., the different surface chemical reactions, and the dynamic re-structuring of the catalyst material at reaction conditions. Modelling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the key descriptive parameters ("materials genes") reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start from a consistent experimental set of "clean data", containing nine vanadium-based oxidation catalysts. These materials were synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying physicochemical processes, and accelerates catalyst design.


Email Address of Submitting Author


NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest