ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
SensorArrayScreening_AKR_CP_120521.pdf (2.53 MB)

Material Screening for Gas Sensing using an Electronic Nose: Gas Sorption Thermodynamic and Kinetic Considerations

preprint
submitted on 12.05.2021, 09:01 and posted on 13.05.2021, 05:34 by Ashwin Kumar Rajagopalan, Camille Petit
To detect multiple gases in a mixture, one must employ an electronic nose or sensor array, composed of several materials as a single material cannot resolve all the gases in a mixture accurately. Given the many candidate materials, choosing the right combination of materials to be used in an array is a challenging task. In a sensor whose sensing mechanism depends on a change in mass upon gas adsorption, both the equilibrium and kinetic characteristics of the gas-material system dictate the performance of the array. The overarching goal of this work is two-fold. First, we aim to highlight the impact of thermodynamic characteristics of gas-material combination on array performance and to develop a graphical approach to rapidly screen materials. Second, we aim to highlight the need to incorporate the gas sorption kinetic characteristics to provide an accurate picture of the performance of a sensor array. To address these goals, we have developed a computational test bench that incorporates a sensor model and a gas composition estimator. To provide a generic study, we have chosen, as candidate materials, hypothetical materials that exhibit equilibrium characteristics similar to metal organic frameworks (MOFs). Our computational studies led to key learnings, namely: (1) exploit the shape of the sensor response as a function of gas composition for material screening purposes for gravimetric arrays; (2) incorporate both equilibrium and kinetics for gas composition estimation in a dynamic system; and (3) engineer the array by accounting for the kinetics of the materials, the feed gas flow rate, and the size of the device.

Funding

ERASE: Emission Reduction by Array of Sensor Electronics

Swiss National Science Foundation

Find out more...

History

Email Address of Submitting Author

a.rajagopalan@imperial.ac.uk

Institution

Imperial College London

Country

United Kingdom

ORCID For Submitting Author

0000-0001-8306-455X

Declaration of Conflict of Interest

None

Usage metrics

ChemRxiv

Categories

Exports