These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
SensorArrayScreening_AKR_CP_120521.pdf (2.53 MB)

Material Screening for Gas Sensing using an Electronic Nose: Gas Sorption Thermodynamic and Kinetic Considerations

submitted on 12.05.2021, 09:01 and posted on 13.05.2021, 05:34 by Ashwin Kumar Rajagopalan, Camille Petit
To detect multiple gases in a mixture, one must employ an electronic nose or sensor array, composed of several materials as a single material cannot resolve all the gases in a mixture accurately. Given the many candidate materials, choosing the right combination of materials to be used in an array is a challenging task. In a sensor whose sensing mechanism depends on a change in mass upon gas adsorption, both the equilibrium and kinetic characteristics of the gas-material system dictate the performance of the array. The overarching goal of this work is two-fold. First, we aim to highlight the impact of thermodynamic characteristics of gas-material combination on array performance and to develop a graphical approach to rapidly screen materials. Second, we aim to highlight the need to incorporate the gas sorption kinetic characteristics to provide an accurate picture of the performance of a sensor array. To address these goals, we have developed a computational test bench that incorporates a sensor model and a gas composition estimator. To provide a generic study, we have chosen, as candidate materials, hypothetical materials that exhibit equilibrium characteristics similar to metal organic frameworks (MOFs). Our computational studies led to key learnings, namely: (1) exploit the shape of the sensor response as a function of gas composition for material screening purposes for gravimetric arrays; (2) incorporate both equilibrium and kinetics for gas composition estimation in a dynamic system; and (3) engineer the array by accounting for the kinetics of the materials, the feed gas flow rate, and the size of the device.


ERASE: Emission Reduction by Array of Sensor Electronics

Swiss National Science Foundation

Find out more...


Email Address of Submitting Author


Imperial College London


United Kingdom

ORCID For Submitting Author


Declaration of Conflict of Interest


Usage metrics