These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Mapping Wave Packet Bifurcation at a Conical Intersection in CH3I by Attosecond XUV Transient Absorption Spectroscopy

submitted on 08.05.2021, 17:33 and posted on 11.05.2021, 06:25 by Kristina Chang, Han Wang, Sonia Marggi Poullain, David Prendergast, Daniel Neumark, Stephen Leone
Extreme ultraviolet (XUV) transient absorption spectroscopy has emerged as a sensitive tool for mapping the real-time structural and electronic evolution of molecules. Here, attosecond XUV transient absorption is used to track dynamics in the A-band of methyl iodide (CH3I). Gaseous CH3I molecules are excited to the A-band by a UV pump (277 nm, ∼20 fs) and probed by attosecond XUV pulses targeting iodine I(4d) core-to-valence transitions. Owing to the excellent temporal resolution of the technique, passage through a conical intersection is mapped through spectral signatures of nonadiabatic wave packet bifurcation observed 15 ± 4 fs following UV photoexcitation. The observed XUV signatures and time dynamics are in agreement with previous simulations [H. Wang, et al. J. Chem. Phys. 151, 124106 (2019)]. Due to the short duration of the UV pump pulse, coherent vibrational motion in the CH3I ground state along the C-I stretch mode (538 ± 7 cm-1) launched by resonant impulsive stimulated Raman scattering and dynamics in multiphoton excited states of CH3I are also detected.


Email Address of Submitting Author


University of California, Berkeley


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare no conflicts of interest.

Usage metrics