ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Machine Learning Solvation Environments in Conductive Polymers: Application to ProDOT-2Hex with Solvent Swelling

preprint
revised on 02.11.2020, 07:16 and posted on 03.11.2020, 06:57 by Ioan-Bogdan Magdau, Thomas Miller
Automated identification and classification of ion solvation sites in diverse chemical systems will improve the understanding and design of polymer electrolytes for battery applications. We introduce a machine learning approach to classify and characterize ion solvation environments based on feature vectors extracted from all-atom simulations. This approach is demonstrated in poly(3,4-propylenedioxythiophene), which is a promising candidate polymer binder for Li-ion batteries. In the dry polymer, four
distinct Li+ solvation environments are identified close to the backbone of the polymer. Upon swelling of the polymer with propylene carbonate solvent, the nature of Li+ solvation changes dramatically, featuring a rapid diversification
of solvation environments. This application of machine learning can be generalized to other polymer condensed-phase systems to elucidate the molecular mechanisms underlying ion solvation.

History

Email Address of Submitting Author

i.b.magdau@gmail.com

Institution

California Institute of Technology

Country

USA

ORCID For Submitting Author

0000-0002-3963-5076

Declaration of Conflict of Interest

no conflict of interest

Exports

Logo branding

Exports