These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Ligand-Metal Charge Transfer Induced via Adjustment of Textural Properties Controls the Performance of Single-Atom Catalysts During Photocatalytic Degradation

revised on 06.04.2021, 09:46 and posted on 06.04.2021, 11:20 by Jiaxu Liu, Yajun Zou, Daniel Cruz, Aleksandr Savateev, Markus Antonietti, Gianvito Vilé
Because of their peculiar nitrogen-rich structure, carbon nitrides are convenient polydentate ligands for designing single-atom-dispersed photocatalysts. However, the relation of catalysts textural properties with their photophysical properties and as a result activity in photocatalytic applications is rarely elaborated. Herein we report the preparation and characterization of a series of single-atom heterogeneous catalysts featuring highly-dispersed Ag and Cu species on mesoporous graphitic C3N4. We show that adjustment of materials textural properties and thereby metal single atoms coordination mode enables ligand-to-metal (LMCT) or ligand-to-metal-to-ligand charge transfer (LMLCT), a property tha was long speculated in single-atom catalysis but never observed. We employ the developed materials in the degradation of organic pollutant under irradiation with visible light. Kinetic investigations under flow conditions show that single atoms of Ag and Cu decrease the amount of toxic organic fragmentation products, while leading to a higher selectivity towards full calcination. The results correlate with the selected mode of charge transfer in the designed photocatalysts and provide a new understanding of the surface state of single-atom catalysts. The concepts can be exploited further to rationally design and optimize other single-atom materials.


Email Address of Submitting Author


Politecnico di Milano



ORCID For Submitting Author


Declaration of Conflict of Interest

Nothing to declare