These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Leveraging Neural Networks and Genetic Algorithms to Refine Electrode Properties in Redox Flow Batteries

submitted on 23.01.2021, 00:44 and posted on 25.01.2021, 12:51 by Kevin Tenny, Richard Braatz, Yet- Ming Chiang, Fikile Brushett
Redox flow batteries are a nascent, yet promising, energy storage technology for which widespread deployment is hampered by technical and economic challenges. A performance-determining component in the reactor, present-day electrodes are often borrowed from adjacent electrochemical technologies rather than specifically designed for use in flow batteries. A lack of structural diversity in commercial offerings, coupled with the time constraints of wet-lab experiments, render broad electrode screening infeasible without a modeling complement. Herein, an experimentally validated model of a vanadium redox flow cell is used to generate polarization data for electrodes with different macrohomogeneous properties (thickness, porosity, volumetric surface area, and kinetic rate constant). Using these data sets, we then build and train a neural network with minimal average root-mean squared testing error (17.9 ± 1.8 mA cm−2) to compute individual parameter sweeps along the cell polarization curve. Finally, we employ a genetic algorithm with the neural network to ascertain electrode property values for improving cell power density. While the developed framework does not supplant experimentation, it is generalizable to different redox chemistries and may inform future electrode design strategies.


Joint Center for Energy Storage Research

NSF Graduate Research Fellowship


Email Address of Submitting Author


Massachusetts Institute of Technology


United States

ORCID For Submitting Author


Declaration of Conflict of Interest