ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Abbaszadeh et al. manuscript and SI combined.pdf (27.54 MB)
0/0

Layer-by-Layer Assembly of Graphene Oxide Nanoplatelets Embedded Desalination Membranes with Improved Chlorine Resistance

preprint
submitted on 17.05.2019 and posted on 20.05.2019 by Mahsa Abbaszadeh, Daniel Krizak, Santanu Kundu
Membranes with polyamide thin film active layer are used in reverse osmosis based water desalination applications. Incorporation of graphene oxide nanoplatelets (GONPs) in the polyamide layer can alter the surface characteristics, permeability, selectivity, and can enhance the chlorine resistance of these membranes. In this study, a layer-by-layer (LbL) synthesis technique has been developed for embedding GONPs in polyamide layer. Polyamide layers with GONPs were synthesized in various sequences, such as alternating layers of GONPs and polyamide, and GONPs on top of the polyamide layer. Incorporation of GONPs resulted in an increase of surface hydrophilicity, as captured by the change of the water contact angle. Water flux and salt rejection properties of synthesized membranes have been investigated by using a dead-end cell. The salt rejection ability of membranes increased slightly with the incorporation of GONPs, while the water flux found to be similar to that observed for the pristine membranes without GONPs. Upon exposure to chlorine, GONPs embedded membranes retained salt rejection performance better than the pristine membranes. Our approach provides an alternative framework to incorporate nanoparticles in thin film membranes in a precise manner and to investigate the effect of such nanoparticles on the membrane performances.

History

Email Address of Submitting Author

santanukundu@gmail.com

Institution

Mississippi State University

Country

USA

ORCID For Submitting Author

0000-0002-0767-0512

Declaration of Conflict of Interest

none

Exports